2. Polynomials
hard

$x^{3}+3 x^{2}+3 x+1$ को निम्नलिखित से भाग देने पर शेषफल ज्ञात कीजिए

$x+\pi$

A

$-\pi^{3}+3 \pi^{2}-3 \pi+1$

B

$\pi^{3}-3 \pi^{2}-3 \pi-1$

C

$-\pi^{3}+3 \pi^{2}+3 \pi-1$

D

$\pi^{3}-3 \pi^{2}+3 \pi-1$

Solution

We have $p ( x )= x ^{3}+3 x ^{2}+3 x +1$ and zero of $x +\pi=(-\pi)$

$[\because x+\pi=0 \Rightarrow x=-\pi]$

$\therefore$      $p (-\pi)=(-5)^{3}+3(-\pi)^{2}+3(-\pi)+1$

$=-\pi^{3}+3\left(\pi^{2}\right)+(-3 \pi)+1=-\pi^{3}+3 \pi^{2}-3 \pi+1$

Thus, the required remainder is $-\pi^{3}+3 \pi^{2}-3 \pi+1$.

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.